metal-organic compounds

Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

Decamethylferrocenium bis(2-oxo-1,3-dithiole-4,5-dithiolato- $\kappa^2 S^4$, S^5)nickelate(III) tetrahydrofuran solvate

S. Rabaça,^a I. C. Santos,^a* M. T. Duarte^b and V. Gama^a

^aDepartamento Química, Instituto Tecnológico e Nuclear/CFMCUL, P-2686-953 Sacavém, Portugal, and ^bInstituto Superior Técnico, Avenida Rovisco Pais, P-1049-001 Lisboa, Portugal Correspondence e-mail: icsantos@itn.pt

Received 27 March 2006 Accepted 16 May 2006 Online 15 June 2006

The title compound, $[Fe(C_{10}H_{15})_2][Ni(C_3OS_4)_2]\cdot C_4H_8O$ or $[Fe(Cp^*)_2][Ni(dmio)_2]\cdot THF$, where $[Fe(Cp^*)_2]^+$ is the decamethylferrocenium cation, dmio is the 2-oxo-1,3-dithiole-4,5dithiolate dianion and THF is tetrahydrofuran, crystallizes with two independent half-anion units [one Ni atom is at the centre of symmetry $(\frac{1}{2}, \frac{1}{2}, 0)$ and the other is at the centre of symmetry $(\frac{1}{2}, 0, \frac{1}{2})$], one cation unit (located in a general position) and one THF solvent molecule in the asymmetric unit. The crystal structure consists of two-dimensional layers composed of parallel mixed chains, where pairs of cations alternate with single anions. These layers are separated by sheets of anions and THF molecules.

Comment

Following the report of bulk molecular magnets (Miller *et al.*, 1986; Pei *et al.*, 1986), significant research effort has been

devoted to this type of material. We have focused our attention on charge-transfer salts based on decamethylmetallocenium donors and monoanionic planar metal dithiolate acceptors, with $S = \frac{1}{2}$. These materials seem adequate to obtain new molecular magnets. The 2-oxo-1,3-dithiole-4,5dithiolate dianion (dmio) contains several peripheral S atoms which could contribute to the existence of extended magnetic interactions, and here we report the structure of the title salt, (I).

The structure of (I) consists of $[Fe(Cp^*)_2]^+$ cations (Cp* is pentamethylcyclopentadienyl), two centrosymmetric [Ni-(dmio)₂]⁻ anions and a tetrahydrofuran (THF) solvent molecule (Fig. 1). The $[Fe(Cp^*)_2]^+$ cations shows approximate C_5 local symmetry and the two Cp* rings exhibit an almost eclipsed conformation, unlike that observed in most $[Fe(Cp^*)_2]^+$ -based charge-transfer salts, which generally contain staggered conformations. The bond distances and angles in the cations and anions are in the expected ranges (Gama et al., 2000). As expected, the centrosymmetric [Ni(dmio)₂]⁻ anions adopt a square-planar coordination geometry, with approximate D_{2h} local symmetry. The anions are essentially planar {the atomic deviations from the average molecular plane are less than 0.0186 Å for the $[Ni1(dmio)_2]^$ unit and less than 0.0577 Å for the $[Ni2(dmio)_2]^-$ unit]. The average Ni-S distance [Ni1-S = 2.151 (2) Å and Ni2-S =2.153 (2) Å] is in good agreement with values found in other square-planar Ni^{III} dithiolate complexes (Mahadevan et al.,

Figure 1

A diagram of the cation and the two independent anion units of (I), showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 40% probability level. H atoms have been omitted for clarity. Atoms labelled with the suffix 'a' are generated by the symmetry operation (-x + 1, -y + 1, -z) and those labelled with the suffix 'b' are generated by the symmetry operation (-x + 1, -y, -z + 1).

1985). The dihedral angle between the average planes of the two $[Ni(dmio)_2]^-$ units is 87.79 Å.

The crystal structure of (I) consists of two-dimensional layers composed of parallel mixed chains, where side-by-side pairs of donors alternate with the isolated acceptor, $\cdots D^+D^+A^-D^+D^+A^-\cdots$ (Figs. 2 and 3). Within the chains, there is a net charge (+) per repeated unit $(D^+D^+A^-)$, and the layers are separated by sheets of anions and THF molecules which are responsible for charge neutralization.

The supramolecular arrangement observed in (I) is similar to that reported for [Fe(Cp*)₂][Ni(dmio)₂]·CH₃CN (Fettouhi et al., 1995). The Cp* fragment of the cation sits above the dmio ligand of the anion. The shorter $D \cdots A$ intrachain separation $(S \cdots C)$ exceeds the sum of the van der Waals radii by ca 4% (Bondi, 1964). The chains in the layers are quite isolated, and $S \cdots O$ short contacts (3.167 Å) involving anions from the chains and the anionic sheets are observed (Fig. 3).

A different type of structure was observed for decamethylferrocenium charge-transfer salts based on similar

Figure 2

A packing diagram for (I), viewed along the b axis, showing a twodimensional layer, composed of parallel mixed chains, separated by sheets of anions and tetrahydrofuran molecules.

Figure 3

A packing diagram for (I), showing the details of the one-dimensional $\cdots D^+ D^+ A^- D^+ D^+ A^- \cdots$ chain and the S \cdots O short contacts. [Symmetry codes: (i) x, y, z; (ii) x, 1 + y, z; (iii) 1 + x, 1 + y, -1 + z; (iv) 1 + x, y, -1 + z; (v) $\frac{3}{2} - x$, $-\frac{1}{2} + y$, -z; (vi) $\frac{3}{2} - x$, $\frac{1}{2} + y$, -z; (vii) $\frac{3}{2} - x$, $-\frac{1}{2} + y$, -z; (viii) $\frac{1}{2} + x$, $\frac{-1}{2} - y$, z; (ix) $\frac{3}{2} - x$, $\frac{1}{2} + y$, z; (x) $\frac{1}{2} + x$, $\frac{1}{2} - y$, z; (xi) $\frac{3}{2} - x$, $\frac{3}{2} + y$, -z; (xii) $\frac{1}{2} + x$, $\frac{3}{2} - y$, z.]

acceptors, but without solvent molecules in the crystal structure, such as $[Fe(Cp^*)_2][M(dmit)_2]$, with M = Ni (Broderik et al., 1989) or Pt (Rabaça et al., 1999), and [Fe(Cp*)2]- $[M(dmio)_2]$, with M = Pd or Pt (Rabaça *et al.*, 1999). For these compounds, the crystal structure consists of an arrangement of parallel stacks, where side-by-side pairs of donors alternate with face-to-face pairs of acceptors.

At high temperatures, the magnetic susceptibility of (I) follows the Curie–Weiss law, $\chi = C/(T - \theta)$, with a θ value of 10.5 K. The dominant ferromagnetic (FM) interactions can be assigned to the FM intrachain DA magnetic coupling (Rabaça et al., 2003), in view of the McConnell I mechanism (McConnell, 1963), due to a spin-polarization effect in the donor, where the C atoms in the C5 rings of the donor ligand present a negative spin density (Rabaça et al., 2001).

In compound (I), the interchain contacts involving the peripheral S atoms seem to be quite weak and the anticipated increase of dimensionality in the magnetic interactions is not observed.

Experimental

Compound (I) was obtained by reaction of equimolar THF solutions of (C₁₆H₃₆N)[Ni(dmio)₂] (Hendrickson et al., 1971) and [Fe-(Cp*)₂]BF₄ (Muller et al., 1997). The two solutions were filtered and slowly combined with constant stirring. Rapid precipitation occurred and a polycrystalline precipitate was collected via vacuum filtration. The precipitate was dissolved in THF. Crystals of (I) suitable for X-ray diffraction analysis were obtained by slow evaporation of a saturated THF solution.

Crystal data

 $[Fe(C_{10}H_{15})_2][Ni(C_3OS_4)_2] \cdot C_4H_8O$ Z = 4 $M_r = 817.70$ $D_x = 1.530 \text{ Mg m}^{-3}$ Monoclinic, $P2_1/a$ Mo $K\alpha$ radiation a = 16.4733 (17) Å $\mu = 1.44 \text{ mm}^{-1}$ b = 11.0224 (10) Å T = 295 (2) K c = 19.693 (2) Å Plate, dark green $\beta = 96.887 \ (9)^{\circ}$ $0.50 \times 0.30 \times 0.04~\text{mm}$ V = 3550.0 (6) Å³

Data collection

Enraf-Nonius CAD-4 6873 independent reflections diffractometer 3359 reflections with $I > 2\sigma(I)$ $\omega/2\theta$ scans $R_{\rm int} = 0.029$ $\theta_{\rm max} = 26.0^{\circ}$ Absorption correction: ψ scan (North et al., 1968) 5 standard reflections $T_{\min} = 0.613, T_{\max} = 0.940$ 7075 measured reflections

Refinement

Refinement on F^2 H-atom parameters constrained $R[F^2 > 2\sigma(F^2)] = 0.072$ $wR(F^2) = 0.149$ $w = 1/[\sigma^2(F_o^2) + (0.0535P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} = 0.001$ S=1.02 $\Delta \rho_{\text{max}} = 0.43 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.34 \text{ e } \text{\AA}^{-3}$ 6873 reflections 401 parameters

every 300 reflections

intensity decay: none

Cp* H atoms were treated as riding, with C-H = 0.96 Å and $U_{\rm iso}({\rm H}) = 1.5 U_{\rm eq}({\rm C})$. Solvent H atoms were treated as riding, with C-H = 0.97 Å and $U_{iso}(H) = 1.2U_{eq}(C)$. Occupancy refinement for the tetrahydrofuran solvent indicated unit occupancy.

Data collection: CAD-4 Software (Enraf-Nonius, 1994); cell refinement: CAD-4 Software; data reduction: PROCESS in MolEN

metal-organic compounds

(Fair, 1990); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SCHAKAL* (Keller, 1989) and *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

This work was partially supported by the Fundação Ciência e Tecnologia (Portugal) under contract No. POCTI/QUI/ 39601/2001.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: GD3016). Services for accessing these data are described at the back of the journal.

References

Bondi, A. (1964). J. Phys. Chem. 68, 441-451.

- Broderik, W. E., Thompson, J. A., Godfrey, M. R., Sabat, M. & Hoffman, B. M. (1989). J. Am. Chem. Soc. 111, 7656–7657.
- Enraf-Nonius (1994). *CAD-4 Software*. Version 5.0. Enraf-Nonius, Delft, The Netherlands.

Fair, C. K. (1990). MolEN. Enraf-Nonius, Delft, The Netherlands.

- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Fettouhi, M., Ouahab, L., Codjovi, E. & Kahn, O. (1995). Mol. Cryst. Liq. Cryst. 273, 29–33.
- Gama, V., Belo, D., Rabaça, S., Santos, I. C., Alves, H., Waerenborg, J. C., Duarte, M. T. & Henriques, R. T. (2000). *Eur. J. Inorg. Chem.* pp. 2101–2110.
 Hendrickson, D. N., Sohn, Y. S. & Gray, H. B. (1971). *Inorg. Chem.* 10, 1559–
- 1563.
- Keller, E. (1989). J. Appl. Cryst. 22, 19-22.
- McConnell, H. M. (1963). J. Chem. Phys. 39, 1910.
- Mahadevan, C., Seshasayee, M., Kuppusamy, P. & Manoharan, P. T. (1985). J. Crystallogr. Spectrosc. Res. 15, 305–316.
- Miller, J. S., Calabrese, J. C., Epstein, A. J., Bigelow, W., Zhang, J. H. & Reiff, W. M. (1986). J. Chem. Soc. Chem. Commun. pp. 1026–1028.
- Muller, H., Jouan, C. & Salhi, F. (1997). Synth. Met. 85, 1457-1458.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
 Pei, Y., Verdaguer, M., Kahn, O., Sletten, J. & Renard, J. P. (1986). J. Am.
- *Chem. Soc.* **108**, 7428–7430.
- Rabaça, S., Gama, V., Belo, D., Santos, I. C. & Duarte, M. T. (1999). *Synth. Met.* **103**, 2302–2303.
- Rabaça, S., Meira, R., Pereira, L. C. J., Duarte, M. T., Novoa, J. J. & Gama, V. (2001). *Inorg. Chim. Acta*, **326**, 89–100.
- Rabaça, S., Santos, I. C., Duarte, M. T. & Gama, V. (2003). Synth. Met. 135–136, 695–696.
- Sheldrick, G. M. (1997). SHELXL97. Release 97-2. University of Göttingen, Germany.